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ABSTRACT

" The PLANS (Primary Land Arctic Navigation System), developed at DREO, optimally
integrates a directional gyro/gyrocompass, an odometer, a 3-axis strapdown magnetometer, a GPS
receiver, a Transit receiver, a baroaltimeter and a digital terrain elevation map, for the purpose of
navigating a land vehicle in the Canadian Arctic under potentially adverse conditions. This report
derives the exact form of the discrete driving noise covariance matrix Qk which is needed to propagate
the covariance mgtrix in the Kalman filter used by PLANS. It is shown that the exact Q) does not have
a Cholesky UDUT decomposition. However, a good approximation is shown to have the necessary
decomposition for use in the Biermann-Agee-Turner formulation of the Kalman filter. This
approximate decomposition is then found. A general result on the preservation of block diagonal form
under UDUT decomposition is also proven.

RESUME

Le syst¢me de navigation terrestre PLANS, congu au CRDO, intégre de fagon optimale un
gyroscope & deux modes (gyrocompas et directionnel), un odomeétre, une sonde magnétique a trois
axes, un récepteur GPS, un récepteur TRANSIT, un altimétre barométrique ainsi qu'un carte
d’élévation numérique. PLANS a été congu pour opérer dans larctique canadien a bord de
véhicules terrestres. Ce rapport présente la formulation exacte de la matrice de covariance Qg
nécessaire pour la propagation de la matrice de covariance du filtre Kalman utilisé par PLANS. Il est
démontré que Qj ne peut étre décomposé selon la méthode Cholesky UDUT. 11 est toutefois
démontré qu’on peut obtenir d’'une bonne approximation la décomposition nécessaire pour utiliser
la formulation Biermann-Agee-Turner du filire Kalman. Cette décomposition approximative est
démontrée. 1] est aussi démontré que la décomposition upuT préserve la forme diagonale.
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EXECUTIVE SUMMARY

PLANS (Primary Land Arctic Navigation System) is a multi-sensor integrated navigation
system developed at DREO. PLANS employs an 8 state Kalman filter to optimally integrate the sensor
data from a Transit receiver, a GPS receiver, a gyrocompass/directional gyro, an odometer, a
magnetometer and a baroaltimeter. In the process of deriving and implementing the Kalman filter
equations, one of the many matrices that must be found is the discrete process noise covariance matrix
Q (also known as the driving noise covariance).

Initially, as is common practice, an approximation was used to evaluate this Q. During a
detailed analysis of simulation results, the behaviour of the PLANS position error covariance matrix, P,
under propagation (i.e. without position measurements from Transit or GPS) came under suspicion.
This behaviour is governed solely by the state transition matrix & (tAt) (at time t over an interval At)
and the driving noise covariance, Q. The discrete driving moise covariance matrix, Q, over the
interval At, is itself defined by the continuous driving noise power spectral density matrix, Q, and the
state transition matrix, & (tAt). Therefore these matrices came under special scrutiny. Since ®(tAt)
was already exact this then led to the desire for a more exact Qg. The purpose of this report is
therefore to derive the "exact” form of Qj (and find its Cholesky decomposition for use in PLANS).

Since PLANS employs a "square root” formulation of the Kalman filter equations for improved
numerical stability, it is therefore necessary to find the Cholesky upuT decomposition of Qy (where
U is an upper triangular matrix and D is diagonal). For the original approximation, Qy was diagonal so
that its decomposition was trivial. With the more exact Qy this is no longer the case. Furthermore the
exact Qy, is not constant, so that the use of a numerical routine to find its decomposition would require
considerable computation, making an explicit decomposition highly desireable.

It is proven in this report that in general upuT decomposition preserves block diagonal form,
and therefore that the process of finding an exact decomposition of a large block diagonal matrix can
be reduced to the much simpler problem of decomposing the smaller blocks. This is then applied to the
Qy for PLANS, so that instead of having to decompose an 8x8 matrix, it is only necessary to decompose
three 1x1 matrices (which is trivial), one 2x2 matrix and one 3x3 matrix. The 2x2 matrix is easily
decomposed exactly. The 3x3 matrix however causes some difficulty. Its upuT decomposition is easily
enough found, however it is not a Cholesky decomposition because its D component has negative
diagonal elements. This is not particularly surprising since the 3x3 matrix is not positive definite and
therefore the existence of its Cholesky decomposition is not guaranteed.

It is thus shown that a Cholesky decomposition of the exact Qy is not possible, and an
approximation is still required. An approximation is found which is exact for all but a few of the small
off-diagonal terms of Qy.

As it turned out, tiuc "suspicious” behaviour of the error state covariance matrix P was not due
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to the inexactness of Q, but in fact could be explained by closer examination of the effect of $.
Although in hindsight this behaviour seems obviously correct, the suspicion arose because of the
intuitive expectation that the position uncertainty (represented by bottom right 2x2 block of P, since the
position error states are the last two elements of the state vector) should increase, or at least not
decrease, in the absence of position measurements. Although it is true that the covariances of most
elements of the state vector behave in this way (since they are independent Markov processes), it is not
generally true for the position covariance. This is because of a geometric effect which can lead to a
cancellation of errors in some situations, such that the position covariance locally decreases. In the case
of PLANS this could be due to the effect of the speed and heading errors while returning to the
starting point partially cancelling the errors accumulated during the outbound portion of the trip (a
perfectly constant heading and speed error would perfectly cancel if movement were on a plane). Since
this geometric effect is correctly modelled in the PLANS Kalman filter, the covariance behaves
accordingly.

Although the "problem” that this effort was intended to solve turned out not to be a problem, a

more exact form of the driving noise covariance is of course desireable in any case, and the general
result on preservation of block diagonal form under decomposition is also quite useful.
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1. INTRODUCTION

Reference [1] describes the multi-sensor integrated navigation system called PLANS (Primary
Land Arctic Navigation System), along with the 8 state Kalman filter used for integration of the sensor
data. In the process of deriving and implementing the Kalman filter equations one of the many
matrices that must be found is the discrete process noise covariance matrix, Qg (also known as the
driving noise covariance). In reference [2] an approximation was used to evaluate this Q. During a
detailed analysis of simulation results, the behaviour of the PLANS position error covariance matrix, P,
under propagation (i.e. without position measurements from Transit or GPS) came under suspicion.
This behaviour is governed solely by the state transition matrix, ®(tAt), and the driving noise
covariance, Qy, as follows:

T
Pirat=  2AOPP (1AD + Qg 1)

where the discrete driving noise covariance matrix, Qy, over the interval At is defined by the
continuous driving noise power spectral density matrix, Q, and the state transition matrix, ® (1At), as
follows (see for example reference [5]):

At
% = [2) Q¥ ar @

0

Therefore these matrices came under special scrutiny, which then led to the desire for a more
exact Q, since P (1,7) was already exact. The purpose of this report is therefore to derive the "exact”
form of Qy and find its Cholesky decomposition for use in PLANS.

Since PLANS employs a "square root" formulation of the Kalman filter equations for improved
numerical stability (see reference [3]), it is therefore necessary to find the Cholesky UDUT
decomposition of Qi (where U is an upper triangular matrix and D is diagonal). For the original
approximation, Qy was diagonal so that its decomposition was trivial. With the more exact Qy this is no
longer the case. Furthermore the exact Qy is not cunstant, so that use of a numerical routine to find its
decomposition would require considerable computation, making an explicit decomposition highly
desireable.




In fact it turns out that a Cholesky decomposition of the exact Qy is not possible, as will be
shown below, and an approximation is still required. This approximation however only involves some of
the small off-diagonal terms, and is exact for most terms of Q.

As it turned out, the “suspicious” behaviour of the error state covariance matrix P was not due
to the inexactness of Qy, but in fact could be explained by closer examination of the effect of &.
Although in hindsight this behaviour seems obviously correct, the suspicion arose because of the
intuitive expectation that the position uncertainty (represented by bottom right 2x2 block of P, since the
position error states are the last two elements of the state vector) should increase, or at least not
decrease, in the absence of position measurements. Although it is true that the covariances of most
elements of the state vector behave in this way (since they are independent Markov processes), it is not
generally true for the position covariance. This is because of a geometric effect which can lead to a
cancellation of errors in some situations, such that the position covariance locally decreases. In the case
of PLANS this could be due to the effect of the speed and heading errors while returning to the
starting point partially cancelling the errors accumulated during the outbound portion of the trip (a
perfectly constant heading and speed error would perfectly cancel if movement were on a plane). Since
this geometric effect is correctly modelled in the PLANS Kalman filter, the covariance behaves
accordingly.

Although the "problem" that this effort was intended to solve turned out not to be a problem, a
more exact form of the driving noise covariance is of course desireable in any case, and the general
result of Appendix A is also quite useful.
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2. THE CONTINUOUS Q MATRIX FOR PLANS

Since the discrete Qg matrix is found by integrating the continuous power spectral density
matrix, Q, folded with the propagation matrix ®(tr), as in (2), we must first examine these two
matrices.

As was shown in reference [2] the PLANS error state vector contains 5 independent first order
Markov processes and three states which are derived from the integrals of these Markov processes.
Thus the continuous power spectral density matrix Q has diagonal elements for each of these Markov
processes, as follows:

r g 0 0 0 0 0 00 Y
0 gg 00 0000
0 0 gg0 0000
o - 000q40000 3)
0 000 0000
0 0 0 0 0gqg0 O
00 00 0000
0000 0000
\ S

where the q; are the constant values of the PSD’s (power spectral densities) of the white
driving noise for each of the individual Markov states. These can be expressed in terms of the standard
Markov process error model parameters (correlation time Ti and steady state covariance pi ) as follows
(see any standard text, such as [5]):

q; = 2pi/Ti 4)

The PLANS error state transition matrix, ® (1), is also derived in reference [2}, where it is
shown to be (at time t, over the interval 7):




r

e7/T1 o 0 0 0 o 0 0
0o eT7/T2 o 0 0 o 0 O
0 o /T3 o 0 0o 0 O
—r/T4 0 0o 0 O

() = o o o ¥ ©)

0 0 0 T4(1-eT/T4) 1 °© 00
o o o 0 e/ o 00
0 0 0 0 ~rssinf 7scosfl 1 0

L 0 o o 0 7scosf) 7ssinf 0 1

where the Ti are Markov process correlation times (constants), S(t) is the vehicle speed, 0 is
the vehicle heading and 7 is the propagation period.




3. THE DISCRETE Qi MATRIX FOR PLANS

The discrete driving noise covariance matrix, Qy, over the interval At, is defined by the
continuous driving noise power spectral density matrix, Q, and the state transition matrix, $(t7), as
shown in equation (.}

At
Q = ] & (t7)QPT (17) ar (6)

0

where from equations (3) and (5) we can see that the integrand is:

dpT-=
|
[ e7/T1 0 0 0 0 0 0
f h
o e7/T2 ¢ 0 0 0 0 O kil
D
0 0 e-’T/T3 0 0 ] o 0 0
]
0 0 0 O
0 0 0o e7/T4 71
- SN
0 0 0 T41e"/TH 1 0 00 0
e’/ 0 o0 0 o %
0 0 )
0 0 0 0 —7Ssinfl 7Scosf 1 0O q 0
L o0 o o 0 7scosf) rssinf 0 1|

Now from this we can a'*eady see that Qy will have the same block diagonal form as ®, namely
three 1-blocks and a 5-block. As shown in Appendix A, this block diagonal form is also preserved under
upuT decomposition. Therefore the top three 1-blocks have trivial decompositions, since they are
already diagonal. Thus for i=1,2,3 we have:




At

Qi) - Je"/“q;e"/“dr (®)
0
=T 1A
N o (9)
= Zig1-e2AUT (10)

Now as seen in equation (4) above, for the steady state Markov process x; the magnitude of
the PSD of the white driving noise is q;, which is related to the steady state covariance pi and the
correlation time Ti  according to:

gq; = 2pi/Ti

Substituting this into equation (10) gives, for i=1,2,3:

Qk(if) = p;j(1 - e2At/Ty (11)

We will now restrict our attention to the remaining S-block. Since this is non-diagonal, it
requires a non-trivial UDUT decomposition. Henceforth for simplicity Q, Q) and ® shall refer to the
corresponding 5-blocks rather than the full matrices. Thus, from (7) we have:

r 1
-7/T4
e o] 0 00 Gg0 000
T4 (1-e~7/T4) 1 0 00 00000
POBT - . o e-m/60o | | 0 0gs00 | 8T (1)
000O0O0
0 -7ssinf 7scosf 10 000 00
L 0 7scosf 7Ssinf 01 |
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-
e/™ o 0 00)]
U [ e~T/T4¢ m1-eTT4) 0 0 o
qrle/™o o 00 0 1 0 —rSsind 1Scosf
= 0 0 qse_T/ T600 0 0 e~ 7/T6 rscosf 1S8ind (13)
0 0 mgScosh 00 0 0 0 3 0
q 0 0 mgssing 00 J ~° ° ° ° v
0 0 qe~27/T6 1qgScode T/T6  1qgSsitfe 7/Té
0 0 TqgScode 7/T6 qgS2cos%r? qgS%sirf codr?
0 0 7qgSsirfe 7/ T6 qgS%sirf codr? q6825in2972
. P

(14)

It is now clear that this Qg also has a block diagonal form, with a 2-block and a 3-block.
Assuming that the time dependent terms (speed S and heading 0) are constant over the integration
interval, the above matrix can be explicitly integrated (as in equation (6)). For convenience we will
label the individual terms as follows:

- 4114912 0 0 0
Q2192 0 0 0
¢ 0 933934935 (15)
0 0 qq3 944 945

0 0 953954955
p

(o}
o~
III

where by symmetry G;; = gj;. Then q11 can be found as in equations (8) to (11) above:

At
11 = IQ49_2ﬂ4dT (16)
0




=T4  o-21T4 IAt
gae
2 94 o

]

lgé'q‘; (1 - e—2At/1'4)

= pa(1l - e—2At/TY)
Similarly for the other components:

At
q12 = IT4q4(l - e—T/T4)e-T/T4dr
0

742 - At
=TQ4(l—eT/r4)2|o

142 -
= 5 a1 - oAU

= T4 p4(l - e'At/r")2

= po(1- e80Ty (as in q1;)

a7

(18;

(19)

(20)




943

Similarly

953

954

d44

At
IqGSCOBOTe-T/TsdT
0

e7/T6 At
q6$cosﬂ___(-‘r /T6-1)
(1/76)2 0

-qusscosf}[e‘At/Ts(At + T6) - T6)

2T6p6Scosf[l - e~At/T61 + At/Té))

At
Iqessine ‘re'T/T6 dr
0

276p6Ssinf[1l - e~At/T61 + At/Té)]

At
Iqsszsinﬂcoso 72 ar
0

qézsinecosog At

q652 sinfcosf A; 3

At
Iq652°°92072d’
0

(21

(22

(23)




Similarly

ds5

q22

"

At

200820 T3
Sccos“U __
de 510

3
qgS2cos?f A;

At
quszsin2012dr
0

At

2502072
S<gin“v _
de 51 o

3
q68251n29 _A%_

At
JT42q4(1 - e~ T/T4)24
0

At
T42q, j(l - 2e-T/T4 + ¢—27/T4)4
0

- T4 . At
T42q, (7 + 2T4e 7/T4 _ T 27/T4, I .

- T4 _ T4
Ta2qy (At + 2Tae~At/Té - TR 28t/ _ ony 4 S5,

— 1 - 3
Ta3q, (At/T4 + 2e~AL/T4 | Zo-2ALMT4 _ 2,

m%% + 40Ot/ T4 _ o-2At/M4 _ 304

10

(29

(25)

(20)




Now by substituting equations (18) through (26) into equation (15) we can write the discrete

5X5 Qg matrix as follows:

Q =
pa1€ T T4 Tapy(1- €2V T2

T4p4(1‘e-At/r 4)2 T42p4@1_: +4e'Al/r4_c-%[/T4_3)
T4

0 0

0 0

L 0 0
where:

At
A = 1 - e-At/T6(1 - —'f-e_)

0 0 0

pg1€28YTO)  o16ScofAp,  2T6SsifApg

6ScoPApg 2883520 pe 2883 SXirf) codi g

3T6 376
2T6SsinfA pg 283 52%f) cod) Pe 24e352n2 P6
3T6 3Té
(27)
(28)

As indicated in reference [1], the correlation times (T4 and T6) and steady state covariances
(p4 and p6) for the Markov processes representing the error in the gyro drift rate and the odometer
scale factor are assumed to be constants. Therefore it is easy to see how this process driving noise
covariance matrix Qy behaves numerically for different discretization intervals At. Using the values

given in [2], we have for At = 60 seconds:

0 0

L 0 0

11

- 0.03ps p4 0 \
P4 40p4 0 0
0 0 0.03pg 237pgScod 237pgSsird

237peScod 40 p682cos20 40 p6525i1ﬂ cod

237 pgSsird 40p6825i1ﬂcos9 40p6825in20

(29)
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and for At = 1 second:

- 0.0005p4 0.0003p4
0.0003p4 0.001p4

0 0
Q =

0 0

0 0

This now allows us to see the relative significance (or insignificance) of the off-diagonal terms.

0 0 0
0
0.0005pg  0.0003 pgScod 0.0003pgSsind

0.0003 pgScod  0.0002peS2cos%  0.0002 pgSZsif cod

0.0003 peSsitd  0.0002pgS2sifcod  0.0002pgS2sin%

12
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4. UDUT DECOMPOSITION OF Qj

To decompose the Qp matrix for use in one of the numerically superior "square root"
formulations of the Kalman filter (see for example reference [3]), we follow Bierman in using the
Cholesky factorization method. For this we must find matrices U and D such that U is upper triangular
with 1’s on the diagonal, D is diagonal and positive semi-definite, and

Qy = upuT @31

Since Qy is of block diagonal form, it can be easily shown that its square root has the same
block diagonal form, and by simple extension so must its U factor (as is proven in Appendix A below).
Therefore the factorization can be greatly simplified by performing it separately on the diagonal blocks
of Qy.

4.1. EXACT DECOMPOSITION OF THE 2X2 BLOCK

A general factorization for a 2x2 block can be found as follows. We equate the general matrix
to the UDUT product, where U and D are of the required form:

ab (1 d [eO 10
[bc] =L01] Of][dl] (32)

(e fd 10
" lo £ d1

\

[ (e+£d2) fd

) fd  f ] 33)

We then solve for the unknown elements of U and D (e, f and d) as functions of the elements

13




of the general matrix (a, b and c). Therefore, by inspection, the exact solution is:

£ = c
d = b/c (34)
e = a - b2/c

This can now be used to find the decomposition of the 2x2 block of Qy, as given in (27). Thus
we take a, b and c are from equation (27) and substitute into (34). The resulting expressions can be
simplified as follows.

(o]
L}

c = Qx(2,2)

At/T4  -2At/T4
'/ -e '/ - 3] (35)

= Ta2| 248t 4 4e
p4 ['r4

At (-At/T4)? N (-At/T4)3]

valh -7+ 2 31

2At
. = 2
= p4T4 { T4

- 2 3
- L - 2'1'A4t . & 2At2/'r4) , o 2At/‘1’4) ]-3 }

(where we have used the first 4 terms of the Maclaurin series expansion for eX)

At At ] 2 Acl3 At At |2 At |3
p4T42{2TAqt +4_¢ﬁ+2[ﬁ] '%[H] -1+m-2[ﬁ'] +_‘?.["'1'T] '3}

3
2 3
= p4T42§ ]

This will be a good approximation provided that the discretization interval At is significantly

14




less than the correlation time T4 (which it will be in PLANS).

Now the next term can also be simplified by similarly using the Maclaurin expansion and
ignoring the higher order terms inAt /T4:

d = b/c

-At /T4
= T4p4( 1 - e )2/c 37)

. a = T4pa( 1 - 1 + Ar/T4)?
2p4aAt3
3T4
T4 (At/T4)2

2A¢3
3T4

= _3 (38)
2At

Finally the third term can also be simplified:

a - bz/c

o
I

Te2pa(1 AU T4

p4T42[2-rA:‘ + 2~ AVT4_2AVT4 _3]

pd(1-c2A1/T4) — (39)

At | 4

— _T“zp“z[ﬁ]
= PiTa 2palt3
3T4

2p4At  3T43padt
- T4 - 2744

15




4At
B2 - a2

In this case the exact solution of (34) is given by (35), (37) and (39), with a good approximation
given by (36), (38) and (40):

d = 3 (41)

4.2. EXACT DECOMPOSITION OF THE 3X3 BLOCK

The decomposition of the 3x3 block can be found in a similar way:

abc (1 hi k0O 100
bdel = Olj][OLO][th (42)
ceg L0 01 0O0m ij1
[k hL im 100
= 0 L jm h10
L0 O m ij1

(k+h2L+i%m) (hL+ijm) im

(hL+ijm)  (L+3%m) Jm (43)

im jm m

16




Therefore we have:

m = g (44)
jm = e
v
= j = e/m
= e/g (45)
im = c
= i = ¢/m
= c¢/g (46)
L+i%m = d

= L =d-e?/m

= d - e?/q 47
hL+ijm = b
‘ = h = (b - ijm)/L
_ b - ce/m
d - ezg
- b - ce/g (48)
d - ezg
k = a - h2L - im
(b - ce(g)z 2
= - -c 49
a a - ezg /9 (49)

Now when the actual values for a, b, ¢, d, e and g are substituted from (27) and (42), we obtain
the decomposition of the 3x3 block of the PLANS state vector driving noise covariance matrix, as
follows:

17




2A¢3

= 25ip2
m 376 S-5in 6 pg (50)
3 = cotf (51)
-At/T6 At
2T6Ssinfl1 - e (1 -7g) | P&

2At3
Wszsinacoseps

3762 _ At
- e ety 2
L = d - e‘cotb
2
[2T6$sin0( 1- e'At/Ts(l"?‘g‘) )Ps]
Xk = p6(1 - e~24T/T6) _

2A¢3
3T6 s2 sin20 fol3)

3 2
= p6(1-e2At/T6) _ e[%%] [1- e*At/TG(l-%)] p6 (55

When these values are substituted into equation (42) we see that the exact decomposition of
3x3 block of Qy has the form:

10 i k0O 1 0 o0©
Q = 0 1 cotf 000 0 1 0 (56)
00 1 OO0m i cotf 1

where:

18




. 283 240
m = <4t S<gn
3T6 P6

. 3T62 -At/Ts At ]
T eArdaipltT ~T6 7
: SAt3sin0[1 © (1-7¢6) (57
At |2

Now unfortunately this solution does not satisfy the requirement that the diagonal elements (k,
} and m) be non-negative. In particular it can be seen that k can be negative by substituting the model
values for p6, T6 and At into equation (57). This iequirement is necessary in order to use the Modified
Weighted Gram-Schmidt aigorithm (described in reference [3]), which is used by PLANS to propagate
the covariance matrix.

However, it is quite common to use a much rougher approximation for the discrete Qi matrix
than is used here. In fact it is common to use QAt in place of the integral of equation {6). This yields a
Qy which is diagonal, and hence has a trivial UDUT decomposition. What has been done for PLANS
however, is to find a decomposition which represents most elements of Qy exactly (including the
diagonal terms) and approximates the others, as described in the next chapter. Although this is not
entirely exact, it is much better than the usual approximation.

19




5. A GOOD APPROXIMATION FOR THE 3X3 DECOMPOSITION

First note that Qy is not positive definite. (The rank of the continuous 5x5 Q matrix, as shown
in the bottom right corner of equation (3), is obviously only two.) Therefore the Cholesky
decomposition of Qy does not nccessarily exist (see for example reference [4]), as we have indeed
discovered. Of course Q is positive semi-definite (since it is a covariance matrix), which is the more
basic requirement for the Kalman filter equations. In order to use the more numerically stable
algorithms however, a decomposible approximation to Qy must be found.

(After determining that the exact UDUT decomposition had a negative dizgonal clement,
another decomposition was attempted: the LDLT, which nses lower triangular rather than upper
triangular matrices. This also (perhaps predictably?) produced a negative diagonal element.)

The following approximation was found by inspection:

10 a ooo) {1 ©
0 1 bcosf 000 0 1
0 0 bsinf 00 c | a bcosf bsinf
(00 ac ) 1 0
= 0 0 bccosf 0 1
00 bcsinf a bcosf bsinf
P
[ a2c abc - cosf abc*sinf
= abc cosl b2c-cos?f b2c:cosfsind (58)
| abc-sinf b2c-cosfsinf b2c-sin2f

By comparing this to equation (27), we see that this already has the correct @ dependence. In
fact we would have an exact solution if we could find an a, b and c to satisfy the following;

ac = p6(1—e‘2At/T6) (59)
2 24¢3
bcc = pé=37g S (60)




abc = 2pgST6|1 - e-At/T6 (1 - %) (61)

This does not generally (i.e. for arbitrary values of p6 T6 and At) have an exact solution. as can
be seen by comparing (59)x(60) and (61)2, which should both be equal to (abc)2. However, by solving
(59) and (60) exactly and approximating (61) we have:

c = pb

a = ‘\'1 - e2At/T8 (62)
2At

b = sAt —
3Té6

This gives an exact solution on the diagonal and latitude/longitude cross terms (the (5,4) and
(4,5) components of this 5x5 block of Q). The ter . wrich arc approximated (the (3,4) and (3,5)
components) have the correct sign and i~ correct § dependence. Further analysis indicates that the
approximated terms are smaller than the true terms, provided only that the propagation interval is
sufficiently short:

At < V12 T6 = 200 minutes (63)

which will certainly be the case in PLANS. This can be seen by substituting (62) into (58) and
comparing to (27). Thus this approximation for Qj is certainly better than the simpler QAt
approximation.
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APPENDIX A: ELOCK DIAGONAL FORM PRESERVATION
UNDER DECOMPOSITION

In this section we shall prove that a block diagonal matrix can be decomposed
(without loss of generality) by decomposing its diagonal blocks. This will be very useful for
implementation of Kalman filters, since state models are often of block diagonal form, with a
separate block for each independent sensor or subsystem. Deriving explicit decompositions
for the corresponding driving noise covariance matrices Qj, can then be greatly simplified.

We will first prove the result for a matrix with two blocks on its diagonal. The extension to the
general case is a straightforward application of mathematical induction.

Consider the Cholesky UDUT decomposition of a positive definite square matrix M, which has
two diagonal blocks:

M1 0
M = (A1)
0 M2
T
A B D 0 A 0
= (A2)
[¢] C 0 E T T
B C

Where A and C are upper triangular matrices with one’s on the diagonal, and D and E are diagonal
matrices (with non-zero elements on the diagonal, since M is positive definite). Multiplying (A2) out

we obtain:

AD BE A 0

Z
1

T T T
(ADA +BEB ) BEC

= (A3)
T T
CEB CEC




Mow for (A2) to be a decomposition of (A1), the off-diagonal blocks of (A3) must be zero. Thus:

CEB = 0 (A4)
BEC = 0 (AS)

Since C is upper triangular with 1's on the diagonal, and E is a diagonal matrix, then if we define:
F = CE (A6)

we can easily see that F is upper triangular with the (non-zero) elements of E on its diagonal. Then
(A4) becomes:

T
FB = 0 (A7)
- el X X X N
0 e2 X X
T
B = 0 (A8)
0 0 e(n-1) x
0 0 0 en
. y

Close examination of (A8) gives us the desired result: Starting with the last row of (A8), we can
see that the bottom row of BT must be zero (since en % 0). Given that the bottom row of BT is zero,
then examination of the second last row of (A8) shows that the second last row of BT also must be zero
(since ep.q # 0). This can be continued up the rows to show that all rows of BT are zero. From (A2)
we can then see that the Cholesky decomposition of M is block diagonal, with the same block form as
M.

Now this can easily be generalized to a matrix N with more than two blocks by separating one
block at a time as follows. Let M1 in (A1) be the top block of N, so that M2 contains all the remaining
blocks. The theorem as it stands proves that M2 can be decomposed separately from M1. Now simply
apply the theorem again to M2 to see that its top diagonal block (the second block of N) can be
decomposed separately from the rest (the third and remaining biocks of N). This can clearly be
repeated until all the blocks have been separated.
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APPENDIX B: POSITION ERROR COVARIANCE PROPAGATION
IN PLANS

The time dependence of the state vector error covariance matrix P, in the absence of
measurement updates, is described by the covariance propagation equation (see for example reference

[5D:

Poay =  Pa+AnpdTa+Ay + Qi (B1)

Since the latitude and longitude error estimates are the last two elements of the state vector,
the position error covariance is described by the last two diagonal elements of the covariance matrix P.
Thus we will examine the propagation of these last two elements of P. From (B1) we can see that this
involves only the bottom two rows of ¢ and their transpose (the last two columns of @T). From
equation (5) we can see that the first four columns of the last two rows of ¢ are zero, and can therefore
be ignored.

Equation (27) can be used to obtain the relevant elements of Qy. Here the pg refers to the
steady state covariance of the sixth state (the odometer scale factor error), as explained by equation
(11). This is a constant which comes from the error model, and has a value of about 0.001
(dimensionless).

If we assign the Markov process covariances, P(5,5) and P(6,6), to their steady state values,
then we would have a gyro heading error P(5,5) of about (0.1 radjan)2 and an odometer scale factor
error P(6,6) of about (1%)2. This is what would be expected in the absence of measurements, and its
reasonableness has been verified by simulation. The relevant portion of (B1) can then be written as
follows, using (5) for the form of ¢ and (30) for the form of Qy :

PisAL =
00l O d e a b
[ablo] 0.0001 f g b -a kooe?d  ksinfoosd
+ (B2)
-a 01 i 1 0 keinfloosfl  ksind
i 0 1

where the position error covariance before propagation is:
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=
1]

P(7,7) (B3)

P(8,8); (B4)

[N
|

The elements a and b of the propagation matrix$ are shown in (5) to be:

-At S sinfl (BS)

[
"

At S cod (B6)

=
]

Assuming a propagation interval of At = 1 second, the relevant elements of the driving noise
covariance Qy can be found from equation (30), which implies that :

k = 0.0002pgS? (B7)

Multiplying (B2) out we obtain:

Priatr =
a b
(0.01a + d) (0.0001b + £) (ad + bf + h) (ae + bg + i) b -a
. . +Qp (B8
(0.0lb + e) (-0.000l1a + g) (bd -af + i) (be - ag + j) 10
01
(0.01a2+ad+0.0001b2+bf+ad+bf+h) x
+ Qk
x (0.01b2+be+0.0001a2-ag+be-ag+7j)
Therefore, the position error covariance terms are:
P(7,7)+A(= (0.01a2 + 0.0001b2 + 2(ad + bf) + h) + kcos2f (B9)

= P(7,7), +0.01a2 + 0.0001b2 + kcos2f + 2(ad + bf)

= P(7,7), + S%(0.01sin% + QO01cos?d + 00000NRcos2) + 2S(sinfd + coff) (B10)




P(88);4a¢ = (0.01b2 + 0.0001a + 2(be - ag) + j)) + ksin2f (B11)

= P(88), +0.01b2 + 0.0001a® + ksin2f + 2(be - ag)

n

P(88), + S%(0.0lcos + QOisin% + 00000Dsin%)) + 2S(code + siflg)  (B12)

Thus the position covariance can decrease in the absence of measurements, if the underlined
terms in equations (B10) and (B12) are large enough in the negative sense. This will happen for certain
values of heading § and speed S, provided the d, ¢, f and g terms are not too small. Simulations have
shown that these terms can be large enough to cause P(7,7) and P(8,8) to decrease, particularly in the
absence of position measurements. The physical interpretation is that while the vehicle is heading back
towards its point of origin the heading and speed errors start to cancel the "outbound” errors. In the
absence of position update measurements (from GPS or Transit) the outbound position errors will of
course be caused entirely by the heading and speed errors, and will therefore be statistically correlated
to them through the cross covariances d, ¢, f and g.
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